| CA00471 CanthaxanthinAntioxidant activity - free radical scavenger, potent quenchers of reactive oxygen species (ROS) and nitrogen oxygen species (Ref.415).Number of conjugated double bonds: 13
| | |
| CA00502 (3S,3'S)-AstaxanthinStrong antioxidant activity - free radical scavenger, potent quenchers of reactive oxygen species (ROS) and nitrogen oxygen species, strong singlet quenching ability - 111 times stronger than that of α-tocopherol - SOAC value: 111 (Ref.616, Ref.413, Ref.415, Ref.597, Ref.598, Ref.599).Number of conjugated double bonds: 13
| | |
| CA00923 BacterioruberinAntioxidant activity - much better radical scavenger than that of β-carotene as it contains 13 pairs of conjugated double bonds (Ref.575, Ref.576).Number of conjugated double bonds: 13
| | |
| CA00157 RhodobacterioxanthinAntioxidant activity - lipid peroxidation inhibitor nearly equal to that of Lycopene (Ref.352).Number of conjugated double bonds: 12
| | |
| CA00043 LycopeneStrong antioxidant. - strong singlet ;quenching ability - 141 times stronger than that of α-tocopherol - SOAC value: 141 (Ref.616, Ref.408, Ref.415, Ref.597, Ref.598, Ref.599).Prevention of lipopolysaccharide-induced Alzheimer’s disease in the preclinical studies by increasing the expression of nuclear Nrf2, HO-1, NQO-1, SOD, CAT, and GSH in Nrf2/ARE antioxidant pathway. (Ref.783)Protecting mitochondria and mitochondrial DNA by antioxidant properties - treatment with lycopene prevents loss of mitochondrial inner membrane potential during ROS challenge (Ref.782).Number of conjugated double bonds: 11
| | |
| CA00044 ProlycopeneHigher antioxidant capacities than all-E-isomer (Ref.780).Number of conjugated double bonds: 11
| | |
| CA00309 β-CaroteneAn antioxidant - free radical scavenger/singlet oxygen quencher. 101 times stronger than that of α-tocopherol - SOAC value: 101 (Ref.616, Ref.415, Ref.451, Ref.597, Ref.598, Ref.599).Number of conjugated double bonds: 11
| | |
| CA00322 β-CryptoxanthinAn antioxidant - 68.6 times stronger singlet oxygen quenching ability than that ofα-tocopherol - SOAC value: 68.6 (Ref.616, Ref.597, Ref.598, Ref.599, Ref.415).Number of conjugated double bonds: 11
| | |
| CA00328 ZeaxanthinAn antioxidant - 91.2 times stronger singlet oxygen quenching ability than that of α-tocopherol - SOAC value: 91.2 (Ref.616, Ref.597, Ref.598, Ref.599, Ref.415).Number of conjugated double bonds: 11
| | |
| CA00739 CapsanthinAn antioxidant - 107 times stronger singlet oxygen quenching ability than that of α-tocopherol - SOAC value: 107 (Ref.616, Ref.597, Ref.598, Ref.599).Number of conjugated double bonds: 11
| | |
| CA01130 (5Z)-LycopeneHigher antioxidant capacities than all-E-isomer (Ref.780).Number of conjugated double bonds: 11
| | |
| CA00587 α-CaroteneAn antioxidant - 87.5 times stronger singlet oxygen quenching ability than that ofα-tocopherol - SOAC value: 87.5 (Ref.616, Ref.597, Ref.598, Ref.599, Ref.415).Number of conjugated double bonds: 10
| | |
| CA00597 LuteinAn antioxidant - 85.4 times stronger singlet oxygen quenching ability than that ofα-tocopherol - SOAC value: 85.4 (Ref.616, Ref.597, Ref.598, Ref.599, Ref.415).Number of conjugated double bonds: 10
| | |
| CA00746 Capsanthin 3,6-epoxideStrong antioxidant activity - significantly inhibits O2 - generation in differentiated human promyelocytic HL-60 cells. (Ref.581).Number of conjugated double bonds: 10
| | |
| CA00519 FucoxanthinAntioxidant activity as an electron donor (Ref.415).Number of conjugated double bonds: 9
| | |
| CA00898 CrocinAn antioxidant - high radical scavenging activity (Ref.456).Number of conjugated double bonds: 9
| | |
| CA01074 DitaxanthinAntioxidant activity comparable to astaxanthin (Ref.477).Number of conjugated double bonds: 9
| | |
| CA01073 HeteranthinAntioxidant activity comparable to astaxanthin (Ref.477).Number of conjugated double bonds: 7
| | |
| CA01065 SafranalAn antioxidant - high radical scavenging activity. (Ref.456)Number of conjugated double bonds: 3
| | |
| CA01225 LoliolideVariety of biological properties such as anti-cancer, antibacterial, antifungal and antioxidant. Also used in alternative medicine in treatment of diabetes and depression (Ref.770).Number of conjugated double bonds: 2
| | |
Ref.782 : Han-A Park et al., Molecules 2020, 25, 3453, “Anti-Apoptotic Effects of Carotenoids in Neurodegeneration”, doi:10.3390/molecules25153453. Ref.780 : Masaki Honda, Ikumi Horiuchi, Hayato Hiramatsu, Yoshinori Inoue, Chitoshi Kitamura, Tetsuya Fukaya and Munenori Takehara, Eur. J. Lipid Sci. Technol. 2016, 118, 1588–1592, “Vegetable oil-mediated thermal isomerization of (all-E)-lycopene: Facile and efficient production of Z-isomers”. Ref.352 : Maoka, Takashi; Mochida, Kooichi; Okuda, Yoko; Ito, Yoshihiro; Fujiwara, Yasuhiro, Chemical & Pharmaceutical Bulletin (1997), 45(7), 1225-1227., "A novel purple carotenoid, rhodobacterioxanthin, from Rhodobacter capsulatus". Ref.477 : Marıa D. Mendez-Robles, Herry H. Permady, Marıa E. Jaramillo-Flores, Eugenia C. Lugo-Cervantes, Anaberta Cardador-Martınez, Alejandro A. Canales-Aguirre, Fernando Lopez-Dellamary, Carlos M. Cerda-Garcı´a-Rojas, and Joaquın Tamariz, J. Nat. Prod. 2006, 69, 1140-1144, "C-26 and C-30 Apocarotenoids from Seeds of Ditaxis heterantha with Antioxidant Activity and Protection against DNA Oxidative Damage". Ref.616 : Takahashi S., Iwasaki-Kino Y., and Terao J., and Mukai K., FOOD COMPOSITION AND ADDITIVES, Journal of AOAC International Vol. 99, no.1, 2016 pp.193-197, "Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader". Ref.415 : Takuji Tanaka, Masahito Shnimizu, and Hisataka Moriwaki, Molecules 2012, 17, 3202-3242; doi:10.3390/molecules17033202, "Cancer Chemoprevention by Carotenoids". Ref.451 : Moshell AN, Bjornson L., J Invest Dermatol. 1977 Mar;68(3):157-60., "Photoprotection in erythropoietic protoporphyria: mechanism of photoprotection by beta carotene.". Ref.597 : Kazuo MUKAI, Aya OUCHI, Oleoscience, Vol. 13 (2013) No. 8 p. 371-378, "Antioxidant Activity of Foods Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method". Ref.598 : Ouchi, A., Aizawa, K., Iwasaki, Y., Inakuma, T., Terao, J., Nagaoka, S., Mukai, K., 2010. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. J. Agric. Food Chem. 58, 9967–78. doi:10.1021/jf101947a. Ref.599 : Aizawa, K., Iwasaki, Y., Ouchi, A., Inakuma, T., Nagaoka, S., Terao, J., Mukai, K., 2011. Development of singlet oxygen absorption capacity (SOAC) assay method. 2. Measurements of the SOAC values for carotenoids and food extracts. J. Agric. Food Chem. 59, 3717–29. doi:10.1021/jf104955a . Ref.413 : Martin Guerin, Mark E Huntley, Miguel Olaizola, Trends in Biotechnology Volume 21, Issue 5, May 2003, Pages 210–216, "Haematococcus astaxanthin: applications for human health and nutrition". Ref.581 : Murakami, A. Nakashima, M. Koshiba, T. Maoka, T. Nishino, H. Yano, M. Sumida, T. Kim, O.K. Koshimizu, K. Ohigashi, H., Cancer letters, 2000, 149, 115-123., “Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes.” . Ref.770 : Malgorzata Grabarczyk et al., Folia Biologica et Oecologica 11: (2015), DOI: 10.1515/fobio-2015-0001, “Loliolide - the most ubiquitous lactone”. Ref.456 : A. N. Assimopoulou, Z. Sinakos, and V. P. Papageorgiou, Phytotherapy Research, Volume 19, Issue 11, pages 997–1000, November 2005, "Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents". Ref.575 : Yatsunami, R.; Ando, A.; Yang, Y.; Takaichi, S.; Kohno, M.; Matsumura, Y.; Ikeda, H.; Fukui, T.; Nakasone, K.; Fujita, N.; et al. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 2014, 5, 100–105.. Ref.576 : Saito, T.; Miyabe, Y.; Ide, H.; Yamamoto, O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997, 50, 267–269..
| |